Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The continuous monitoring of oxygen saturation (SpO2) and respiratory rates (RRs) are major clinical issues in many cardio-respiratory diseases and have been of tremendous importance during the COVID-19 pandemic. The early detection of hypoxemia was crucial since it precedes significant complications, and SpO2 follow-up allowed early hospital discharge in patients needing oxygen therapy. Nevertheless, fingertip devices showed some practical limitations. In this study, we investigated the reliability of the new Multisense® pulse oximetry system compared to a reference pulse oximeter (Vyntus CPX Pulse Oximeter) during hypoxia. In a population of sixteen healthy male subjects (mean age: 31.5 ± 7.0 years, BMI: 24.9 ± 3.6 kg/m², and 35% with darker skin tones), simultaneous SpO2 and RR measurements were collected over 12.4 h, during which FiO2 was progressively reduced from 21% to 10.5%. The average root mean square error (ARMS) of SpO2 for Multisense® placed on the back and chest was 2.94% and 2.98%, respectively, with permutation testing confirming a significant ARMS below 3.5% for both positions and no statistically significant difference in the ARMS between patch placements. Positive correlations and acceptable accuracy between devices were observed at both locations (r = 0.92, p < 0.001 and r = 0.90, p < 0.001 for back and chest placements, respectively). Bland–Altman analysis further indicated limits of agreement that support consistency across placements, with similar agreement levels noted across skin tones. Similar findings were obtained with the RR measurements. In conclusion, Multisense® demonstrated robust accuracy in measuring SpO2 and RRs during hypoxia in humans comparable to standard hospital-grade equipment. The effectiveness of the findings suggests that this wearable device is a valuable tool for the continuous monitoring of SpO2 and RRs, potentially enhancing patient safety and optimizing hospital resource allocation. Nevertheless, to overcome study limitations and allow generalized use, further work on a larger population sample, including more subjects with a high phototype and desaturation below 80%, would be useful.

Details

Title
Accuracy of Rhythm Diagnostic Systems’ MultiSense® in Detection of Arterial Oxygen Saturation and Respiratory Rate During Hypoxia in Humans: Effects of Skin Color and Device Localization
Author
Evrard, Charles 1 ; Amina El Attaoui 2   VIAFID ORCID Logo  ; Pistea, Cristina 1 ; Enache, Irina 1 ; Marriott, Mark 2 ; Mayaud, Louis 2   VIAFID ORCID Logo  ; Charloux, Anne 1 ; Geny, Bernard 3   VIAFID ORCID Logo 

 Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; [email protected] (C.E.); [email protected] (C.P.); [email protected] (I.E.); [email protected] (A.C.); Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France 
 Rhythm Diagnostic Systems SAS, 67000 Strasbourg, France; [email protected] (A.E.A.); [email protected] (M.M.) 
 Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; [email protected] (C.E.); [email protected] (C.P.); [email protected] (I.E.); [email protected] (A.C.); Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-Universitaire, 67000 Strasbourg, France 
First page
127
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153690373
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.