Content area

Abstract

Existing databases supporting Online Transaction Processing (OLTP) workloads based on non-volatile memory (NVM) have not fully leveraged hardware characteristics, resulting in an imbalance between throughput and recovery performance. In this paper, we conclude with the reason why existing designs fail to achieve both: placing indexes on NVM results in numerous random writes and write amplification for index updates, leading to a decrease in system performance. Placing indexes on dynamic random access memory (DRAM) results in much time consumption for rebuilding indexes during recovery. To address this issue, we propose FIR, an NVM OLTP Engine with the fast rebuilding of the DRAM indexes, achieving instant system recovery while maintaining high throughput. Firstly, we design an index checkpoint strategy. During recovery, the indexes are quickly rebuilt by the bottom-up algorithm with index checkpoints. Then, to achieve instant recovery of the entire engine after rebuilding indexes, we optimize the existing log-free design by leveraging time-ordered storage, which significantly reduces the number of NVM writes. We also implement garbage collection based on data redistribution, enhancing system availability. The experimental results demonstrate that FIR achieves 98% of the performance of state-of-the-art OLTP Engine when running TPCC and YCSB. And the recovery speed of FIR is 43.6×–54.5× faster, achieving near-instantaneous recovery.

Details

1009240
Business indexing term
Title
FIR: Achieving High Throughput and Fast Recovery in a Non-Volatile Memory Online Transaction Processing Engine
Author
Publication title
Volume
14
Issue
1
First page
39
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-12-26
Milestone dates
2024-10-21 (Received); 2024-11-26 (Accepted)
Publication history
 
 
   First posting date
26 Dec 2024
ProQuest document ID
3153799153
Document URL
https://www.proquest.com/scholarly-journals/fir-achieving-high-throughput-fast-recovery-non/docview/3153799153/se-2?accountid=208611
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-10
Database
ProQuest One Academic