Content area
Autonomous electric vehicle (AEV) services leverage advanced autonomous driving and electric vehicle technologies to provide innovative, driverless transportation solutions. The biggest challenge faced by AEVs is the limited number of charging stations and long charging times. A critical challenge is maximizing passenger travel satisfaction while reducing the AEV idle time. This involves coordinating passenger transport and charging tasks via leveraging the information from charging stations, passenger transport, and AEV data. There are four important contributions in this paper. Firstly, we introduce an integrated scheduling model that considers both passenger transport and charging tasks. Secondly, we propose a multi-level differentiated charging threshold strategy, which dynamically adjusts the charging threshold based on both AEV battery levels and the availability of charging stations, reducing competition among vehicles and minimizing waiting times. Thirdly, we develop a rapid strategy to optimize the selection of charging stations by combining geographic and deviation distance. Fourthly, we design a new evolutionary algorithm to solve the proposed model, in which a buffer space is introduced to promote diversity within the population. Finally, experimental results show that compared to the existing state-of-the-art scheduling algorithms, the proposed algorithm shortens the running time of scheduling algorithms by 6.72% and reduces the idle driving time of AEVs by 6.53%, which proves the effectiveness and efficiency of the proposed model and algorithm.
Details
Task scheduling;
Deep learning;
Strategy;
Emissions;
Idling;
Electric vehicles;
Traffic flow;
Automobile sales;
Energy consumption;
Electric vehicle charging;
Traffic congestion;
Evolutionary algorithms;
Scheduling;
Design optimization;
Costs;
Carbon;
Passenger satisfaction;
Energy efficiency;
Travel;
Linear programming;
Methods;
Optimization algorithms;
Traveling salesman problem;
Passengers;
Run time (computers)
