Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the forms of cyber threats become increasingly severe, cybersecurity knowledge graphs (KGs) have become essential tools for understanding and mitigating these threats. However, the quality of the KG is critical to its effectiveness in cybersecurity applications. In this paper, we propose a spurious-negative sample augmentation-based quality evaluation method for cybersecurity KGs (SNAQE) that includes two key modules: the multi-scale spurious-negative triple detection module and the adaptive mixup based on the attention mechanism module. The multi-scale spurious-negative triple detection module classifies the sampled negative triples into spurious-negative and true-negative triples. Subsequently, the attention mechanism-based adaptive mixup module selects appropriate mixup targets for each spurious-negative triple, constructing partially correct triples and achieving more precise sample generation in the entity embedding space to assist in training the KG quality evaluation models. Through extensive experimental validation, the SNAQE model not only performs excellently in general-domain KG quality evaluation but also achieves outstanding outcomes in the cybersecurity KGs, significantly enhancing the accuracy and F1 score of the model, with the best F1 score of 0.969 achieved on the FB15K dataset.

Details

Title
Research on Spurious-Negative Sample Augmentation-Based Quality Evaluation Method for Cybersecurity Knowledge Graph
Author
Chen, Bin 1 ; Li, Hongyi 1 ; Shi, Ze 2   VIAFID ORCID Logo 

 School of Cyber Science and Technology, Beihang University, Beijing 100191, China 
 School of Cyber Science and Technology, Beihang University, Beijing 100191, China; School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China 
First page
68
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153862909
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.