Content area

Abstract

This paper focuses on modeling Resistor-Inductor (RL) electric circuits using a fractional Riccati initial value problem (IVP) framework. Conventional models frequently neglect the complex dynamics and memory effects intrinsic to actual RL circuits. This study aims to develop a more precise representation using a fractional-order Riccati model. We present a Jacobi collocation method combined with the Jacobi-Newton algorithm to address the fractional Riccati initial value problem. This numerical method utilizes the characteristics of Jacobi polynomials to accurately approximate solutions to the nonlinear fractional differential equation. We obtain the requisite Jacobi operational matrices for the discretization of fractional derivatives, therefore converting the initial value problem into a system of algebraic equations. The convergence and precision of the proposed algorithm are meticulously evaluated by error and residual analysis. The theoretical findings demonstrate that the method attains high-order convergence rates, dependent on suitable criteria related to the fractional-order parameters and the solution’s smoothness. This study not only improves comprehension of RL circuit dynamics but also offers a solid numerical foundation for addressing intricate fractional differential equations.

Details

1009240
Title
Analysis of RL electric circuits modeled by fractional Riccati IVP via Jacobi-Broyden Newton algorithm
Publication title
PLoS One; San Francisco
Volume
20
Issue
1
First page
e0316348
Publication year
2025
Publication date
Jan 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-08-05 (Received); 2024-12-05 (Accepted); 2025-01-14 (Published)
ProQuest document ID
3155638641
Document URL
https://www.proquest.com/scholarly-journals/analysis-rl-electric-circuits-modeled-fractional/docview/3155638641/se-2?accountid=208611
Copyright
© 2025 Abd El-Hady et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-15
Database
ProQuest One Academic