It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A vertex v of a given graph is said to be in a rainbow neighbourhood of G if every color class of G consists of at least one vertex from the closed neighbourhood N[v]. A maximal proper coloring of a graph G is a J-coloring if and only if every vertex of G belongs to a rainbow neighbourhood of G. In general all graphs need not have a J-coloring, even though they admit a chromatic coloring. In this paper, we characterise graphs which admit a J-coloring. We also discuss some preliminary results in respect of certain graph operations which admit a J-coloring under certain conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mathematics, CHRIST (Deemed to be University, Bangalore, India
2 Department of Mathematics, CHRIST (Deemed to be UniversityBangalore, India