Content area

Abstract

This paper presents a novel method for improving semantic segmentation performance in computer vision tasks. Our approach utilizes an enhanced UNet architecture that leverages an improved ResNet50 backbone. We replace the last layer of ResNet50 with deformable convolution to enhance feature representation. Additionally, we incorporate an attention mechanism, specifically ECA-ASPP (Attention Spatial Pyramid Pooling), in the encoding path of UNet to capture multi-scale contextual information effectively. In the decoding path of UNet, we explore the use of attention mechanisms after concatenating low-level features with high-level features. Specifically, we investigate two types of attention mechanisms: ECA (Efficient Channel Attention) and LKA (Large Kernel Attention). Our experiments demonstrate that incorporating attention after concatenation improves segmentation accuracy. Furthermore, we compare the performance of ECA and LKA modules in the decoder path. The results indicate that the LKA module outperforms the ECA module. This finding highlights the importance of exploring different attention mechanisms and their impact on segmentation performance. To evaluate the effectiveness of the proposed method, we conduct experiments on benchmark datasets, including Stanford and Cityscapes, as well as the newly introduced WildPASS and DensPASS datasets. Based on our experiments, the proposed method achieved state-of-the-art results including mIoU 85.79 and 82.25 for the Stanford dataset, and the Cityscapes dataset, respectively. The results demonstrate that our proposed method performs well on these datasets, achieving state-of-the-art results with high segmentation accuracy.

Details

1009240
Title
Advancing semantic segmentation: Enhanced UNet algorithm with attention mechanism and deformable convolution
Publication title
PLoS One; San Francisco
Volume
20
Issue
1
First page
e0305561
Publication year
2025
Publication date
Jan 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-02-05 (Received); 2024-05-31 (Accepted); 2025-01-16 (Published)
ProQuest document ID
3156419023
Document URL
https://www.proquest.com/scholarly-journals/advancing-semantic-segmentation-enhanced-unet/docview/3156419023/se-2?accountid=208611
Copyright
© 2025 Sahragard et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-21
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic