Content area

Abstract

Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies. Additionally, it presents an intelligent system design method for fault tracing in compressors and localization of faults from different sources. This method starts from petrochemical big data and consists of three parts: fault dynamic knowledge graph construction, instrument data sliding fault-tolerant filtering, and the fusion and reasoning of fault dynamic knowledge graph and instrument data variation monitoring. The results show that this method effectively overcomes the problems of false alarms and missed alarms based on fixed threshold alarm methods, and achieves 100% classification of two types of faults: non starting of the drive machine and low oil pressure by constructing a PCA (Principal Component Analysis)—SPE (Square Prediction Error)—CNN (Convolutional Neural Network) classifier. Combined with dynamic knowledge graph and NLP (Natural Language Processing) inference, it achieves good diagnostic results.

Details

1009240
Business indexing term
Title
Design and realization of compressor data abnormality safety monitoring and inducement traceability expert system
Author
Publication title
PLoS One; San Francisco
Volume
20
Issue
1
First page
e0315917
Publication year
2025
Publication date
Jan 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-08-24 (Received); 2024-11-28 (Accepted); 2025-01-16 (Published)
ProQuest document ID
3156421470
Document URL
https://www.proquest.com/scholarly-journals/design-realization-compressor-data-abnormality/docview/3156421470/se-2?accountid=208611
Copyright
© 2025 Wang, Hu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-28
Database
ProQuest One Academic