Content area

Abstract

Fast twitch, type II muscle fibers are particularly prone to degradation in skeletal muscle pathologies, such as sarcopenia and muscular dystrophies. We previously showed that endogenous activation of the exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis. In the present study, we identify an independent pro-myogenic element within human CYTOR and optimize its RNA delivery. In human primary myoblasts exogenous, vector-based CYTORexon 2 recapitulates the effect of full-length CYTOR by enhancing fast-twitch myogenic differentiation. Furthermore, chemically modified CYTORexon 2 RNA (N1-me-PseudoU, 7-methyl guanosine 5 prime Cap, polyA tail) enhanced RNA stability and reduced the immunogenic response to CYTOR exon 2 RNA. We demonstrate that viral- or chemically optimized RNA-mediated CYTOR exon 2 administration enhances the commitment towards myogenic maturation in Duchenne muscular dystrophy-derived primary myoblasts, induced myogenic progenitor cells and mouse embryonic stem cells. Furthermore, chemically optimized CYTOR exon 2 improves key disease characteristics in dystrophic myotubes, including calcium handling and mitochondrial bioenergetics. In summary, our findings identify CYTOR exon 2 as the pro-myogenic domain of CYTOR that can be delivered in a disease context using chemical modifications. This is of particular importance given the susceptibility of type II muscle fibers in different muscle pathologies such as aging and dystrophies, and the reported oncogenic effect of CYTOR exon 1. Our study, therefore, highlights the potential of identifying functional domains in noncoding RNAs. Delivery, or targeting of such RNA domains could constitute next-generation RNA therapeutics.

Competing Interest Statement

MW and JA are inventors on an EPFL patent application covering the use of CYTOR for muscle disorders. The other authors do not declare a conflict of interest.

Details

1009240
Title
Delivery of a chemically modified noncoding RNA domain improves dystrophic myotube function
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Jan 22, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3158241285
Document URL
https://www.proquest.com/working-papers/delivery-chemically-modified-noncoding-rna-domain/docview/3158241285/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-23
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic