It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
By using two different invariants for the Rubik’s Magic puzzle, one of metric type, the other of topological type, we can dramatically reduce the universe of constructible configurations of the puzzle. Finding the set of actually constructible shapes remains however a challenging task, that we tackle by first reducing the target shapes to specific configurations: the octominoid 3D shapes, with all tiles parallel to one coordinate plane; and the planar “face-up” shapes, with all tiles (considered of infinitesimal width) lying in a common plane and without superposed consecutive tiles. There are still plenty of interesting configurations that do not belong to either of these two collections. The set of constructible configurations (those that can be obtained by manipulation of the undecorated puzzle from the starting situation) is a subset of the set of configurations with vanishing invariants. We were able to actually construct all octominoid shapes with vanishing invariants and most of the planar “face-up” configurations. Particularly important is the topological invariant, of which we recently found mention in [7] by Tom Verhoeff.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dipartimento di Matematica e Fisica, Università Cattolica “Sacro Cuore”, Brescia, Italy