Content area

Abstract

The enteric nervous system (ENS) is formed from vagal neural crest cells (NCC), which generate most of the neurons and glia that regulate gastrointestinal function. Defects in the migration or differentiation of NCC in the gut can result in gastrointestinal disorders such as Hirschsprung disease (HSCR). Although mutations in many genes have been associated with the etiology of HSCR, a significant proportion of affected individuals have an undetermined genetic diagnosis. Therefore, it is important to identify new genes, modifiers and environmental factors that regulate ENS development and disease. Rdh10 catalyzes the first oxidative step in the metabolism of vitamin A to its active metabolite, RA, and is therefore a central regulator of vitamin A metabolism and retinoic acid (RA) synthesis during embryogenesis. We discovered that retinol dehydrogenase 10 (Rdh10) loss-of-function mouse embryos exhibit intestinal aganglionosis, characteristic of HSCR. Vagal NCC form and migrate in Rdh10 mutant embryos but fail to invade the foregut. Rdh10 is highly expressed in the mesenchyme surrounding the entrance to the foregut and is essential between E7.5-E9.5 for NCC invasion into the gut. Comparative RNA-sequencing revealed downregulation of the Ret-Gdnf-Gfra1 gene signaling network in Rdh10 mutants, which is critical for vagal NCC chemotaxis. Furthermore, the composition of the extracellular matrix through which NCC migrate is also altered, in part by increased collagen deposition. Collectively this restricts NCC entry into the gut, demonstrating that Rdh10-mediated vitamin A metabolism and RA signaling pleiotropically regulates the NCC microenvironment during ENS formation and in the pathogenesis of intestinal aganglionosis.

Competing Interest Statement

The authors have declared no competing interest.

Details

1009240
Title
Rdh10-mediated Retinoic Acid Signaling Regulates the Neural Crest Cell Microenvironment During ENS Formation
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Jan 23, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3158976052
Document URL
https://www.proquest.com/working-papers/rdh10-mediated-retinoic-acid-signaling-regulates/docview/3158976052/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-24
Database
ProQuest One Academic