Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background/Objectives: The rise of multidrug-resistant (MDR) infections demands personalized antibiotic strategies for febrile neutropenia (FN) in hematological malignancies. This study investigates machine learning (ML) for identifying patient profiles with increased susceptibility to bloodstream infections (BSI) during FN onset, aiming to tailor treatment approaches. Methods: From January 2020 to June 2022, we used the unsupervised ML algorithm KAMILA to analyze data from hospitalized hematological malignancy patients. Eleven features categorized clinical phenotypes and determined BSI and multidrug-resistant Gram-negative bacilli (MDR-GNB) prevalences at FN onset. Model performance was evaluated with a validation cohort from July 2022 to March 2023. Results: Among 462 FN episodes analyzed in the development cohort, 116 (25.1%) had BSIs. KAMILA’s stratification identified three risk clusters: Cluster 1 (low risk), Cluster 2 (intermediate risk), and Cluster 3 (high risk). Cluster 2 (28.4% of episodes) and Cluster 3 (43.7%) exhibited higher BSI rates of 26.7% and 37.6% and GNB BSI rates of 13.4% and 19.3%, respectively. Cluster 3 had a higher incidence of MDR-GNB BSIs, accounting for 75% of all MDR-GNB BSIs. Cluster 1 (27.9% of episodes) showed a lower BSI risk (<1%) with no GNB infections. Validation cohort results were similar: Cluster 3 had a BSI rate of 38.1%, including 78% of all MDR-GNB BSIs, while Cluster 1 had no GNB-related BSIs. Conclusions: Unsupervised ML-based risk stratification enhances evidence-driven decision-making for empiric antibiotic therapies at FN onset, crucial in an era of rising multi-drug resistance.

Details

Title
Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia
Author
Gallardo-Pizarro, Antonio 1   VIAFID ORCID Logo  ; Christian Teijón-Lumbreras 2 ; Monzo-Gallo, Patricia 1 ; Aiello, Tommaso Francesco 1   VIAFID ORCID Logo  ; Chumbita, Mariana 1 ; Peyrony, Olivier 3   VIAFID ORCID Logo  ; Gras, Emmanuelle 4 ; Pitart, Cristina 5 ; Mensa, Josep 2 ; Esteve, Jordi 6 ; Soriano, Alex 7   VIAFID ORCID Logo  ; Garcia-Vidal, Carolina 1 

 Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; [email protected] (A.G.-P.); [email protected] (C.T.-L.); [email protected] (P.M.-G.); [email protected] (T.F.A.); [email protected] (M.C.); [email protected] (O.P.); [email protected] (E.G.); [email protected] (J.M.); [email protected] (A.S.); Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain 
 Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; [email protected] (A.G.-P.); [email protected] (C.T.-L.); [email protected] (P.M.-G.); [email protected] (T.F.A.); [email protected] (M.C.); [email protected] (O.P.); [email protected] (E.G.); [email protected] (J.M.); [email protected] (A.S.) 
 Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; [email protected] (A.G.-P.); [email protected] (C.T.-L.); [email protected] (P.M.-G.); [email protected] (T.F.A.); [email protected] (M.C.); [email protected] (O.P.); [email protected] (E.G.); [email protected] (J.M.); [email protected] (A.S.); Emergency Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France 
 Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; [email protected] (A.G.-P.); [email protected] (C.T.-L.); [email protected] (P.M.-G.); [email protected] (T.F.A.); [email protected] (M.C.); [email protected] (O.P.); [email protected] (E.G.); [email protected] (J.M.); [email protected] (A.S.); Institut Pierre Louis d’Épidémiologie et de Santé Publique, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University, 75012 Paris, France 
 Department of Microbiology, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; [email protected] 
 Department of Hematology, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; [email protected] 
 Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain; [email protected] (A.G.-P.); [email protected] (C.T.-L.); [email protected] (P.M.-G.); [email protected] (T.F.A.); [email protected] (M.C.); [email protected] (O.P.); [email protected] (E.G.); [email protected] (J.M.); [email protected] (A.S.); Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain; CIBERINF, CIBER in Infectious Diseases, 28029 Madrid, Spain 
First page
13
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159194528
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.