Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The potential of terminating cover crops with a roller-crimper is of increasing interest. A two-year (2020/21 and 2021/22) study was conducted in Fresno, CA, USA. Five cover crop treatments (rye (Secale cereale L.) alone, ultra-high diversity mix, multiplex cover crop mix, fava bean (Vicia faba L.) + phacelia (Phacelia tanacetifolia Benth.), and rye + field pea (Pisum sativum L.) + purple vetch (Vicia americana Muhl. Ex Willd.)) were planted in November, roller-crimped in April, and silage maize (Zea mays L.) was strip-till planted in the residue in May. Cover crop kill, soil cover by residue, weed cover, amount of organic residue, and silage maize yield were recorded. The roller-crimper resulted in 95 to 100% kill of the cover crops. Soil cover at maize canopy closure (mid-July) was approximately 90% in the rye plots while it was 30 to 70% in the other treatments. The fava bean + phacelia cover crop disintegrated the most rapidly. Weed cover was <5% in all the treatments until maize canopy closure. The cover crops added 6.7 to 14 MT ha−1 of residue. Maize silage yield was similar across the treatments. Therefore, in this study, cover crops were successfully terminated by the roller-crimper, allowing successful strip-till establishment and production of silage maize.

Details

Title
Potential of Cover Crop Use and Termination with a Roller-Crimper in a Strip-Till Silage Maize (Zea mays L.) Production System in the Central Valley of California
Author
Willmott, Robert 1 ; Valdez-Herrera, Jennifer 1 ; Mitchell, Jeffrey P 2 ; Shrestha, Anil 1   VIAFID ORCID Logo 

 Department of Plant Science, California State University, 2415 E. San Ramon Ave. M/S AS72, Fresno, CA 93740, USA 
 Department of Plant Sciences, University of California, Davis, CA 95616, USA 
First page
132
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159279202
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.