Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance. Innovative structural configurations, such as layered and encapsulated designs, optimize triboelectric efficiency and enhance environmental adaptability. Applications span healthcare, human–machine interfaces, and wearable electronics, demonstrating the immense potential for tactile sensing and energy harvesting. Despite significant progress, challenges remain in scalability, long-term durability, and multifunctional integration. Future research should focus on advanced material development, scalable fabrication, and intelligent system integration to unlock the full potential of self-healing TENGs. This review provides a comprehensive overview of current achievements and future directions, underscoring the pivotal role of self-healing TENGs in artificial skin technology.

Details

Title
Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins
Author
Li, Guoliang 1 ; Li, Zongxia 1 ; Hu, Haojie 1 ; Chen, Baojin 2 ; Wang, Yuan 1 ; Mao, Yanchao 2   VIAFID ORCID Logo  ; Li, Haidong 1 ; Zhang, Baosen 1 

 Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China 
 Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China 
First page
37
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159416561
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.