Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The ability to treat the surface of an object with coatings that counteract the change in radiance resulting from the object’s blackbody emission can be very useful for applications requiring temperature-independent radiance behavior. Such a response is difficult to achieve with most materials except when using phase-change materials, which can undergo a drastic change in their optical response, nullifying the changes in blackbody radiation across a narrow range of temperatures. We report on the theoretical design, giving the possibility of extending the temperature range for temperature-independent radiance coatings by utilizing multiple layers, each comprising a different phase-change material. These designed multilayer coatings are based on thin films of samarium nickelate, vanadium dioxide, and doped vanadium oxide and cover temperatures ranging from room temperature to up to 140 °C. The coatings are numerically engineered in terms of layer thickness and doping, with each successive layer comprising a phase-change material with progressively higher transition temperatures than those below. Our calculations demonstrate that the optimized thin film multilayers exhibit a negligible change in the apparent temperature of the engineered surface. These engineered multilayer films can be used to mask an object’s thermal radiation emission against thermal imaging systems.

Details

Title
Temperature-Independent Thermal Radiation Design Using Phase-Change Materials
Author
Babicheva, Viktoriia E 1   VIAFID ORCID Logo  ; Kim, Heungsoo 2 ; Piqué, Alberto 2   VIAFID ORCID Logo 

 Department of Electrical and Computer Engineering, University of New Mexico, MSC01 1100, 1 University of New Mexico, Albuquerque, NM 87131, USA 
 Naval Research Laboratory, 4555 Overlook Ave, Washington, DC 20375, USA; [email protected] (H.K.); [email protected] (A.P.) 
First page
38
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159426354
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.