Content area

Abstract

The prediction of structural damage through vibrational analysis is a critical task in the field of composite structures. Structural defects and damage can negatively influence the load-carrying capacity of the beam. Therefore, detecting structural damage early is essential to preventing catastrophic failures. This study addresses the challenge of predicting damage in composite concrete–steel beams using a vibration-based finite element approach. To tackle this complex task, a finite element model to a quasi-static analysis emulating a four-point pure bending experimental test was performed. Notably, the numerical model equations were carefully modified using the Newton–Raphson method to account for the stiffness degradation resulting from material strains. These modified equations were subsequently employed in a modal analysis to compute modal shapes and natural frequencies corresponding to the stressed state. The difference between initial and damaged modal shape curvatures served as the foundation for predicting a damage index. The approach effectively captured stiffness degradation in the model, leading to observable changes in modal responses, including a reduction in natural frequencies and variations in modal shapes. This enabled the accurate prediction of damage instances during construction, service, or accidental load scenarios, thereby enhancing the structural and operational safety of composite system designs. This research contributes to the advancement of vibration-based methods for damage detection, emphasizing the complexities in characterizing damage in composite structural geometries. Further exploration and refinement of this approach are essential for the precise classification of damage types.

Details

1009240
Business indexing term
Title
Vibration-Based Damage Prediction in Composite Concrete–Steel Structures Using Finite Elements
Publication title
Buildings; Basel
Volume
15
Issue
2
First page
200
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-01-10
Milestone dates
2024-11-04 (Received); 2024-12-27 (Accepted)
Publication history
 
 
   First posting date
10 Jan 2025
ProQuest document ID
3159456854
Document URL
https://www.proquest.com/scholarly-journals/vibration-based-damage-prediction-composite/docview/3159456854/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-24
Database
ProQuest One Academic