Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Mixed-species plantations involving Eucalyptus and Acacia trees are an effective alternative for managing sustainable plantations. In this study, we evaluated the growth, productivity, nutrient return, and soil properties of a mixed Eucalyptus hybrid (Eucalyptus camaldulensis Dehnh. × E. urophylla S.T. Blake; E) and Acacia auriculiformis A. Cunn. ex Benth. plantation (A) and Eucalyptus hybrid and A. auriculiformis plantations. The mixed Eucalyptus hybrid and A. auriculiformis plantation included three ratios at E33:A67, E50:A50, and E67:A33, while the Eucalyptus (E100) and A. auriculiformis (A100) plantations were established on degraded lands in the Had Wanakorn Forestry Research and Student Training Station, Prachuap Khiri Khan province, Thailand. Three replications within a plot size of 20 × 20 m2 were designed to plant Eucalyptus hybrid and A. auriculiformis seedlings at a spacing of 2 × 3 m2. The diameters at breast height (DBH) and height (H) of the Eucalyptus hybrid and A. auriculiformis were measured and monitored after planting for five years. The aboveground biomass of the five-year-old mixed and monoculture plantations was then estimated. Litterfall production and nutrient return from the mixed and monoculture plantations were measured for three years. In addition, soil samples at depths of 0–5, 5–10, and 10–20 cm were collected to analyze the soil’s chemical properties. Differences in growth, aboveground biomass, litterfall production, nutrient return, and soil properties were analyzed and tested using Tukey’s HSD. The results indicated that both the DBH and H of the Eucalyptus hybrid in the mixed and monoculture plantations were not significantly different (p > 0.05). Similarly, the DBH and H of A. auriculiformis in each treatment were also not significantly different (p > 0.05). However, the DBH and H of the Eucalyptus hybrid were higher than those of A. auriculiformis. The aboveground biomass for the mixed plantation ratios E50:A50, E100, E67:A33, and E33:A67 was not significantly different, while the stem biomass was the highest in E100. Litterfall production was influenced by the proportion of the Eucalyptus hybrid relative to A. auriculiformis, but the monoculture A100 plantation had the highest litter production. The nitrogen return estimated for the mixed plantation was between A100 and E100. Similarly, the total nitrogen in the topsoil (0–5 cm) of the mixed plantation was higher than that in the monoculture E100 plantation. These results indicate that mixing A. auriculiformis with Eucalyptus can improve soil nutrients and nutrient cycling and increase nutrient returns, suggesting that mixed plantations are an effective option for sustainable plantation management and can mitigate the negative environmental impacts of Eucalyptus monocultures.

Details

Title
Growth, Productivity, and Nutrient Return of a Mixed Plantation of Fast-Growing Eucalyptus Hybrid and Acacia auriculiformis Trees in Thailand
Author
Wongprom, Jetsada 1 ; Jumwong, Narinthorn 1 ; Sangvisitpirom, Pattama 1 ; Diloksumpun, Sapit 2   VIAFID ORCID Logo  ; La-ongdao Thaopimai 1   VIAFID ORCID Logo 

 Forestry Research Center, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand; [email protected] (J.W.); 
 Department of Silviculture, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand 
First page
182
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159478538
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.