Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper aims to address the trajectory tracking problem of quadrotors under complex dynamic environments and significant fluctuations in system states. An adaptive trajectory tracking control method is proposed based on an improved Model Predictive Path Integral (MPPI) controller and a Multilayer Perceptron (MLP) neural network. The technique enhances control accuracy and robustness by adjusting control inputs in real time. The Multilayer Perceptron neural network can learn the dynamics of a quadrotor by its state parameter and then the Multilayer Perceptron sends the model to the Model Predictive Path Integral controller. The Model Predictive Path Integral controller uses the model to control the quadcopter following the desired trajectory. Experimental data show that the improved Model Predictive Path Integral–Multilayer Perceptron method reduces the trajectory tracking error by 23.7%, 34.7%, and 10.3% compared to the traditional Model Predictive Path Integral, MPC with MLP, and a two-layer network, respectively. These results demonstrate the potential application of the method in complex environments.

Details

Title
Quadcopter Trajectory Tracking Based on Model Predictive Path Integral Control and Neural Network
Author
Li, Yong; Zhu, Qidan; Elahi, Ahsan
First page
9
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159498298
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.