Content area

Abstract

An adaptive sliding mode controller (SMC) design with a reinforcement-learning parameter optimization method is proposed for variable-speed trajectory tracking control of underactuated vessels under scenarios involving model uncertainties and external environmental disturbances. First, considering the flexible control requirements of the vessel’s propulsion system, the desired navigation speed is designed to satisfy an S-curve acceleration and deceleration process. The rate of change of the trajectory parameters is derived. Second, to address the model uncertainties and external disturbances, an extended state observer (ESO) is designed to estimate the unknown bounded disturbances and to provide feedforward compensation. Moreover, an adaptive law is designed to estimate the upper bound of the unknown disturbances, ensuring system stability even in the presence of asymptotic observation errors. Finally, the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm is employed for real-time controller parameter tuning. Numerical simulation results demonstrate that the proposed method significantly improves the trajectory tracking accuracy and dynamic response speed of the underactuated vessel. Specifically, for a sinusoidal trajectory with an amplitude of 200 m and a frequency of 0.01, numerical results show that the proposed method achieves convergence of the longitudinal tracking error to zero, while the lateral tracking error remains stable within 1 m. For the circular trajectory with a radius of 300 m, the numerical results indicate that both the longitudinal and lateral tracking errors are stabilized within 1 m. Compared with the fixed-value sliding mode controller, the proposed method demonstrates superior trajectory tracking accuracy and smoother control performance.

Details

1009240
Business indexing term
Title
Sliding Mode Control for Variable-Speed Trajectory Tracking of Underactuated Vessels with TD3 Algorithm Optimization
Volume
13
Issue
1
First page
99
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-01-07
Milestone dates
2024-11-19 (Received); 2025-01-06 (Accepted)
Publication history
 
 
   First posting date
07 Jan 2025
ProQuest document ID
3159529905
Document URL
https://www.proquest.com/scholarly-journals/sliding-mode-control-variable-speed-trajectory/docview/3159529905/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-25
Database
ProQuest One Academic