Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As seabed exploration activities increase, side-scan sonar (SSS) is being used more widely. However, distortion and noise during the acoustic pulse’s travel through water can blur target details and cause feature loss in images, making target recognition more challenging. In this paper, we improve the YOLO model in two aspects: lightweight design and accuracy enhancement. The lightweight design is essential for reducing computational complexity and resource consumption, allowing the model to be more efficient on edge devices with limited processing power and storage. Thus, meeting our need to deploy SSS target detection algorithms on unmanned surface vessel (USV) for real-time target detection. Firstly, we replace the original complex convolutional method in the C2f module with a combination of partial convolution (PConv) and pointwise convolution (PWConv), reducing redundant computations and memory access while maintaining high accuracy. In addition, we add an adaptive scale spatial fusion (ASSF) module using 3D convolution to combine feature maps of different sizes, maximizing the extraction of invariant features across various scales. Finally, we use an improved multi-head self-attention (MHSA) mechanism in the detection head, replacing the original complex convolution structure, to enhance the model’s ability to focus on important features with low computational load. To validate the detection performance of the model, we conducted experiments on the combined side-scan sonar dataset (SSSD). The results show that our proposed SS-YOLO model achieves average accuracies of 92.4% (mAP 0.5) and 64.7% (mAP 0.5:0.95), outperforming the original YOLOv8 model by 4.4% and 3%, respectively. In terms of model complexity, the improved SS-YOLO model has 2.55 M of parameters and 6.4 G of FLOPs, significantly lower than those of the original YOLOv8 model and similar detection models.

Details

Title
SS-YOLO: A Lightweight Deep Learning Model Focused on Side-Scan Sonar Target Detection
Author
Yang, Na 1 ; Li, Guoyu 2 ; Wang, Shengli 1 ; Wei, Zhengrong 1   VIAFID ORCID Logo  ; Hu, Ren 1 ; Zhang, Xiaobo 1   VIAFID ORCID Logo  ; Pei, Yanliang 3 

 College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] (N.Y.); [email protected] (S.W.); [email protected] (H.R.); [email protected] (X.Z.) 
 Qingdao Xiushan Mobile Mapping Co., Ltd., Qingdao 266590, China; [email protected] 
 First Institute of Oceanography of Ministry of Natural Resources, Qingdao 266061, China; [email protected] 
First page
66
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159531558
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.