Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Change detection (CD) is an important research direction in the field of remote sensing, which aims to analyze the changes in the same area over different periods and is widely used in urban planning and environmental protection. While supervised learning methods in change detection have demonstrated substantial efficacy, they are often hindered by the rising costs associated with data annotation. Semi-supervised methods have attracted increasing interest, offering promising results with limited data labeling. These approaches typically employ strategies such as consistency regularization, pseudo-labeling, and generative adversarial networks. However, they usually face the problems of insufficient data augmentation and unbalanced quality and quantity of pseudo-labeling. To address the above problems, we propose a semi-supervised change detection method with data augmentation and adaptive threshold updating (DA-AT) for high-resolution remote sensing images. Firstly, a channel-level data augmentation (CLDA) technique is designed to enhance the strong augmentation effect and improve consistency regularization so as to address the problem of insufficient feature representation. Secondly, an adaptive threshold (AT) is proposed to dynamically adjust the threshold during the training process to balance the quality and quantity of pseudo-labeling so as to optimize the self-training process. Finally, an adaptive class weight (ACW) mechanism is proposed to alleviate the impact of the imbalance between the changed classes and the unchanged classes, which effectively enhances the learning ability of the model for the changed classes. We verify the effectiveness and robustness of the proposed method on two high-resolution remote sensing image datasets, WHU-CD and LEVIR-CD. We compare our method to five state-of-the-art change detection methods and show that it achieves better or comparable results.

Details

Title
Semi-Supervised Change Detection with Data Augmentation and Adaptive Thresholding for High-Resolution Remote Sensing Images
Author
Zhang, Wuxia 1   VIAFID ORCID Logo  ; Xinlong Shu 1 ; Wu, Siyuan 2   VIAFID ORCID Logo  ; Ding, Songtao 1 

 School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; [email protected] (X.S.); [email protected] (S.D.) 
 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China; [email protected] 
First page
178
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159538405
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.