Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present study involved (TiB + TiC)/TC11 (Ti-6.5Al-3.5Mo-1.2Zr-0.3Si) + xFe titanium matrix composites (TMCs) reinforced by in situ TiB whiskers and TiC particles fabricated by hot isostatic pressing. Microstructure observation reveals a substantial distribution of in situ reinforcements, which form a network-reinforced structure at the prior particle boundaries of the TC11 matrix. The micro–nanoscale TiB whiskers and TiC particles within and surrounding this network serve as effective dislocation pinning. The enhancement of mechanical properties can be attributed to load-bearing strengthening, fine-grain strengthening, and dislocation strengthening. The hardness and compressive strengths were investigated through mechanical properties testing. The hardness increased by 19.4% (2 wt% B4C-reinforced composites) compared with TC11 alloy. However, the addition of 2 wt% Fe at the same B4C level (2 wt% B4C + 2 wt% Fe-reinforced composites) resulted in a significant increase in hardness by 37.5% and 15.2% in compressive strengths of TMC and can be attributed to the solid solution strengthening effect and higher dislocation density provided by the addition of Fe. In addition, the optimal overall properties can be achieved by strictly regulating the addition ratio of 2 wt% Fe and 1 wt% B4C, allowing for a compressive strength of 2301 MPa while still maintaining a compressive strain of 24.6%.

Details

Title
Microstructure Evolution and Mechanical Properties of B4C-Reinforced TC11 + xFe Composites Fabricated by HIP
Author
Qian, Shenwei 1 ; Wang, Nan 1 ; Chen, Feng 1 ; Sun, Yangyang 1 ; Zhao, Jiong 2 ; Chang, Hui 1 ; Liang, Feng 1 ; Zhou, Lian 1 

 Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; [email protected] (S.Q.); [email protected] (N.W.); [email protected] (F.C.); [email protected] (H.C.); [email protected] (L.F.); [email protected] (L.Z.) 
 Jiangsu Tiangong Technology Co., Ltd., Zhenjiang 212400, China; [email protected] 
First page
37
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159551070
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.