Content area
Knowledge flow as the key to facilitating new technology production and diffusing innovation is crucial for achieving sustainable development. However, previous studies pay less attention to the type of knowledge in knowledge flow network construction, possibly leading to the deviation of conclusions. To fully show the panorama of knowledge flow, this study distinguishes between explicit and tacit knowledge based on the transfer of patent rights data and talent flow data, describes the spatial characteristics of flow networks and uses a multiple regression quadratic assignment procedure model to analyze the proximity mechanism of network formation in the Yangtze River Delta. We find that knowledge flow networks in the Yangtze River Delta cover a wide range but are extremely uneven, mainly concentrated along the Yangtze River and around Hangzhou Bay. In addition, the spatial structures of different types of knowledge flow networks vary. Different dimensions of proximity act in relatively consistent directions for both types of knowledge flows, with geographical and organizational proximity found to exert positive effects on facilitating knowledge flows while cognitive proximity has a negative impact. There is also a substitution effect between geographical proximity and organizational proximity, and a complementary effect with cognitive proximity. These findings provide significant implications for optimizing knowledge flow networks and promoting sustainable development.
Details
; Liu, Weichen 2 1 Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China;
2 Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China;