Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background/Objectives: The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol)4-5 methacrylatea-co-hexyl methacrylateb)X-b-poly(butyl methacrylatec-co-dimethylaminoethyl methacrylated-co-propyl acrylatee)Y (p(PEG4-5MAa-co-HMAb)X-b-p(BMAc-co-DMAEMAd-co-PAAe)Y), via reversible addition–fragmentation chain transfer polymerization. The cPMs were then formulated using the synthesized polymer by the dispersion–diffusion method and characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (CryoTEM). The membrane-destabilization activity of the cPMs was evaluated by a hemolysis assay. We performed an in vivo functional assay of firefly luciferase (Fluc) mRNA using two of the most commonly studied LNPs, SM102 LNP and Dlin-MC3-DMA LNPs. Results: With a particle size of 61.31 ± 0.68 nm and a zeta potential of 37.76 ± 2.18 mV, the cPMs exhibited a 2–3 times higher firefly luciferase signal at the injection site compared to the control groups without cPMs following intramuscular injection in mice, indicating the high potential of cPMs to enhance the endosomal escape efficiency of mRNA-LNPs. Conclusions: The developed cPM, with enhanced endosomal escape capabilities, presents a promising strategy to improve the expression efficiency of delivered mRNAs. This approach offers a novel alternative strategy with no modifications to the inherent properties of mRNA-LNPs, preventing any unforeseeable changes in formulation characteristics. Consequently, this polymer-based nanomaterial holds immense potential for clinical applications in mRNA-based vaccines.

Details

Title
Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs
Author
Deng, Siyuan 1 ; Shao, Han 1 ; Shang, Hongtao 1 ; Pang, Lingjin 1 ; Chen, Xiaomeng 1 ; Cao, Jingyi 2 ; Wang, Yi 2 ; Zhao, Zhao 1 

 Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; [email protected] (S.D.); [email protected] (H.S.); [email protected] (H.S.); [email protected] (L.P.); [email protected] (X.C.); [email protected] (J.C.) 
 Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; [email protected] (S.D.); [email protected] (H.S.); [email protected] (H.S.); [email protected] (L.P.); [email protected] (X.C.); [email protected] (J.C.); NeoCura Bio-Medical Technology Co., Ltd., 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China 
First page
25
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2076393X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159616612
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.