Content area

Abstract

When undergoing or about to undergo a needle-related procedure, most people are not aware of the adverse emotional and physical reactions (so-called vasovagal reactions; VVR), that might occur. Thus, rather than relying on self-report measurements, we investigate whether we can predict VVR levels from the video sequence containing facial information measured during the blood donation. We filmed 287 blood donors throughout the blood donation procedure where we obtained 1945 videos for data analysis. We compared 5 different sequences of videos—45, 30, 20, 10 and 5 seconds to test the shortest video duration required to predict VVR levels. We used 2D-CNN with LSTM and GRU to predict continuous VVR scores and to classify discrete (low and high) VVR values obtained during the blood donation. The results showed that during the classification task, the highest achieved F1 score on high VVR class was 0.74 with a precision of 0.93, recall of 0.61, PR-AUC of 0.86 and an MCC score of 0.61 using a pre-trained ResNet152 model with LSTM on 25 frames and during the regression task the lowest root mean square error achieved was 2.56 using GRU on 50 frames. This study demonstrates that it is possible to predict vasovagal responses during a blood donation using facial features, which supports the further development of interventions to prevent VVR.

Details

1009240
Title
Predicting vasovagal reactions to needles from video data using 2D-CNN with GRU and LSTM
Publication title
PLoS One; San Francisco
Volume
20
Issue
1
First page
e0314038
Publication year
2025
Publication date
Jan 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2023-12-05 (Received); 2024-11-04 (Accepted); 2025-01-24 (Published)
ProQuest document ID
3159629530
Document URL
https://www.proquest.com/scholarly-journals/predicting-vasovagal-reactions-needles-video-data/docview/3159629530/se-2?accountid=208611
Copyright
© 2025 Rudokaite et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-28
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic