Content area
The performance of drones, especially for time-sensitive tasks, is critical in various applications. Fog nodes strategically placed near IoT devices serve as computational resources for drones, ensuring quick service responses for deadline-driven tasks. However, the limited battery capacity of drones poses a challenge, necessitating energy-efficient Internet of Drones (IoD) systems. Despite the increasing demand for drone flying automation, there is a significant absence of a comprehensive drone network service architecture tailored for secure and efficient operations of drones. This research paper addresses this gap by proposing a safe, reliable, and real-time drone network service architecture, emphasizing collaboration with fog computing. The contribution includes a systematic architecture design and integration of blockchain technology for secure data storage. Fog computing was introduced for the Drone with Blockchain Technology (FCDBT) model, where drones collaborate to process IoT data efficiently. The proposed algorithm dynamically plans drone trajectories and optimizes computation offloading. Results from simulations demonstrate the effectiveness of the proposed architecture, showcasing reduced average response latency and improved throughput, particularly when accessing resources from fog nodes. Furthermore, the model evaluates blockchain consensus algorithms (PoW, PoS, DAG) and recommends DAG for superior performance in handling IoT data. Fog; Drones; Blockchain; PSO; IoT; Vehicular.
Details
Internet of Things;
Computer architecture;
Algorithms;
Communication;
Data storage;
Energy efficiency;
Blockchain;
Edge computing;
Nodes;
Data processing;
Unmanned aerial vehicles;
Automation;
Privacy;
Energy consumption;
Network latency;
Computation offloading;
Connectivity;
Drones;
Latency;
Real time;
IoT devices
