Content area

Abstract

The performance of drones, especially for time-sensitive tasks, is critical in various applications. Fog nodes strategically placed near IoT devices serve as computational resources for drones, ensuring quick service responses for deadline-driven tasks. However, the limited battery capacity of drones poses a challenge, necessitating energy-efficient Internet of Drones (IoD) systems. Despite the increasing demand for drone flying automation, there is a significant absence of a comprehensive drone network service architecture tailored for secure and efficient operations of drones. This research paper addresses this gap by proposing a safe, reliable, and real-time drone network service architecture, emphasizing collaboration with fog computing. The contribution includes a systematic architecture design and integration of blockchain technology for secure data storage. Fog computing was introduced for the Drone with Blockchain Technology (FCDBT) model, where drones collaborate to process IoT data efficiently. The proposed algorithm dynamically plans drone trajectories and optimizes computation offloading. Results from simulations demonstrate the effectiveness of the proposed architecture, showcasing reduced average response latency and improved throughput, particularly when accessing resources from fog nodes. Furthermore, the model evaluates blockchain consensus algorithms (PoW, PoS, DAG) and recommends DAG for superior performance in handling IoT data. Fog; Drones; Blockchain; PSO; IoT; Vehicular.

Details

1009240
Business indexing term
Title
Empowering drones in vehicular network through fog computing and blockchain technology
Publication title
PLoS One; San Francisco
Volume
20
Issue
1
First page
e0314420
Publication year
2025
Publication date
Jan 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-04-18 (Received); 2024-11-10 (Accepted); 2025-01-24 (Published)
ProQuest document ID
3159629726
Document URL
https://www.proquest.com/scholarly-journals/empowering-drones-vehicular-network-through-fog/docview/3159629726/se-2?accountid=208611
Copyright
© 2025 Wadhwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-01
Database
ProQuest One Academic