Content area

Abstract

Microgravity accelerates skeletal muscle degeneration, mimicking aging, yet its effects on human muscle cell function and signaling remain underexplored. Using a muscle lab-on-chip model onboard the International Space Station, we examined how microgravity and electrically stimulated contractions influence muscle biology and age-related muscle changes. Our 3D bioengineered muscle model, cultured for 21 days (12 days in microgravity), included myobundles from young, active and older, sedentary individuals, with and without electrically stimulated contraction. Real-time data collected within an autonomous Space Tango CubeLabTM showed reduced contraction magnitude in microgravity. Global transcriptomic analysis revealed increased gene expression and particularly mitochondrial-related gene expression in microgravity for the electrically stimulated younger myobundles, while the older myobundles were less responsive. Moreover, a comparative analysis using a skeletal muscle aging gene expression database revealed that certain age-induced genes showed changes in expression in myobundles from the younger cohort when exposed to microgravity, whereas these genes remained unchanged in myobundles from the older cohort. Younger, electrically stimulated myobundles in microgravity exhibited higher expression of 45 aging genes involved in key aging pathways related to inflammation and immune function, mitochondrial dysfunction, and cellular stress; and decreased expression of 41 aging genes associated with inflammation, and cell growth. This study highlights a unique age-related molecular signature in muscle cells exposed to microgravity and underscores electrical stimulation as a potential countermeasure. These insights advance understanding of skeletal muscle aging and microgravity-induced degeneration, informing strategies for mitigating age-related muscle atrophy in space and on Earth.

Competing Interest Statement

Siobhan Malany is founder of Micro-gRx and a member of the scientific board. Legrand Malany is author of a patent application for the microfluidic device.

Details

1009240
Title
Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS.
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Jan 27, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3160209483
Document URL
https://www.proquest.com/working-papers/microgravity-accelerates-skeletal-muscle/docview/3160209483/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-28
Database
ProQuest One Academic