Full Text

Turn on search term navigation

© 2025 Morbey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

During winter months, there is increased pressure on health care systems in temperature climates due to seasonal increases in respiratory illnesses. Providing real-time short-term forecasts of the demand for health care services helps managers plan their services. During the Winter of 2022–23 we piloted a new forecasting pipeline, using existing surveillance indicators which are sensitive to increases in respiratory syncytial virus (RSV). Indicators including telehealth cough calls and emergency department (ED) bronchiolitis attendances, both in children under 5 years. We utilised machine learning techniques to train and select models that would best forecast the timing and intensity of peaks up to 28 days ahead. Forecast uncertainty was modelled usings a novel generalised additive model for location, scale and shape (gamlss) approach which enabled prediction intervals to vary according to the level of the forecast activity. The winter of 2022–23 was atypical because the demand for healthcare services in children was exceptionally high, due to RSV circulating in the community and increased concerns around invasive group A streptococcal (iGAS) infections. However, our short-term forecasts proved to be adaptive forecasting a new higher peak once the increasing demand due to iGAS started. Thus, we have demonstrated the utility of our approach, adding forecasts to existing surveillance systems.

Details

Title
Using machine learning to forecast peak health care service demand in real-time during the 2022–23 winter season: A pilot in England, UK
Author
Morbey, Roger A  VIAFID ORCID Logo  ; Todkill, Dan; Moura, Phil; Tollinton, Liam; Charlett, Andre; Watson, Conall; Elliot, Alex J
First page
e0292829
Section
Research Article
Publication year
2025
Publication date
Jan 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3160321601
Copyright
© 2025 Morbey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.