Full Text

Turn on search term navigation

© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The eruptions of the Tajogaite volcano on the western flank of the Cumbre Vieja ridge on the island of La Palma between September and December 2021 released large amounts of ash and SO2. Transport and dispersion of the volcanic emissions were monitored by ground-based stations and satellite instruments alike. In particular, the spectrometric fluorescence and Raman lidar for atmospheric moisture sensing (RAMSES) at the Lindenberg Meteorological Observatory measured the plume of the strongest Tajogaite eruption of 22–23 September 2021 over northeastern Germany 4 d later. This study provides an analysis of SO2 vertical column density (VCD) and layer height (LH) measurements of the volcanic plume obtained with Sentinel-5 Precursor/TROPOspheric Monitoring Instrument (TROPOMI), which are compared to the observations at several stations across the Canary Islands. Furthermore, a new modeling approach based on TROPOMI SO2 VCD measurements and the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was developed, which confirmed the link between Tajogaite eruptions and Lindenberg measurements. Modeled mean emission height at the volcanic vent is in excellent agreement with co-located TROPOMI SO2 LH and local lidar ash-height measurements. Finally, a comprehensive discussion of the RAMSES measurements is presented. A new retrieval approach has been developed to estimate the microphysical properties of the volcanic aerosol. For the first time, an optical particle model is utilized that assumes an irregular, non-spheroidal shape of the aerosol particles. According to the analysis, the volcanic aerosol consisted solely of fine-mode inorganic, solid, and irregularly shaped particles – the presence of large aerosol particles or wildfire aerosols could be excluded. The particles likely had an isometric to slightly plate-like shape with an effective half of the particle maximum dimension around 0.1 µm and a refractive index of about 1.51. Moreover, mass column values between 70 and 110 mgm2, mean mass concentrations of 45–70 µgm-3, and mean mass conversion factors between 0.21 and 0.33 gm-2 at 355 nm were retrieved. Possibly RAMSES observed, at least in part, volcanic secondary sulfate aerosol, which was produced by gas-phase homogeneous reactions during the transport of the air masses from La Palma to Lindenberg.

Details

Title
Analysis of the long-range transport of the volcanic plume from the 2021 Tajogaite/Cumbre Vieja eruption to Europe using TROPOMI and ground-based measurements
Author
Hedelt, Pascal 1   VIAFID ORCID Logo  ; Reichardt, Jens 2 ; Lauermann, Felix 2 ; Weiß, Benjamin 1 ; Theys, Nicolas 3 ; Redondas, Alberto 4   VIAFID ORCID Logo  ; Barreto, Africa 4 ; Garcia, Omaira 4   VIAFID ORCID Logo  ; Loyola, Diego 1   VIAFID ORCID Logo 

 Deutsches Zentrum für Luft- und Raumfahrt, Remote Sensing Institute (DLR-IMF), Wessling, Germany 
 Deutscher Wetterdienst (DWD), Meteorologisches Observatorium Lindenberg, Lindenberg, Germany 
 Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium 
 Izaña Atmospheric Research Center, AEMET – State Meteorological Agency, Santa Cruz de Tenerife, Spain 
Pages
1253-1272
Publication year
2025
Publication date
2025
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3160733560
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.