Content area

Abstract

This thesis explores Machine Learning (ML) for authenticating art. Interpol treats art forgery as a serious crime with the number of forgeries threatening the growing field of art as an investment asset class. Present authentication methods appear to lack efficacy, reducing their ability to address this challenge.

The literature review outlines the current state of art authentication, ML and digital transformation. A questionnaire explored the current state of authentication, the diffusion status of AI art authentication as per Rogers (2003), its disruptive potential according Si & Chen (2020), and its potential acceptance according to Venkatesh and Bala (2008). Responses from 65 participants were collected.

The findings revealed a growing demand for AI art authentication, with the art market showing awareness and preliminary adoption but not full implementation. Although currently not a disruptive technology, ML has the potential to complement traditional authentication methods but will face acceptance resistance that can be mitigated through strategic interventions. According Hanelt et al's (2020) framework, AI art authentication has the potential to digitally transform the artworld.

Conflict of interest:The author is associated with ARTTRD, a company involved in AI art authentication. Despite this, efforts have been made to maintain academic integrity and prevent bias in the research due to this affiliation.

Alternate abstract:

Esta tese investiga Aprendizado de Máquina (ML) em autenticação de arte. A Interpol vê a falsificação de arte como crime grave, afetando o investimento em arte. Métodos atuais de autenticação são ineficazes neste desafio.

A revisão de literatura aborda o estado da autenticação de arte, ML e transformação digital. Um questionário avaliou a autenticação atual, a difusão da autenticação de arte por IA (Rogers, 2003), seu potencial disruptivo (Si & Chen, 2020) e aceitação (Venkatesh e Bala, 2008). Respostas de 65 participantes foram coletadas.

Descobertas indicam crescente demanda por autenticação de arte por IA, com adoção inicial no mercado de arte, mas sem implementação total. ML, ainda não disruptivo, pode complementar métodos tradicionais, enfrentando resistência à aceitação, mitigável por intervenções estratégicas. Segundo Hanelt et al. (2020), a autenticação de arte por IA pode transformar digitalmente o mundo da arte.

Conflito de interesse: O autor está vinculado à ARTTRD, empresa em autenticação de arte por IA. Esforços foram feitos para manter integridade acadêmica e evitar viés.

Details

1010268
Title
Potential Digital Transformation of the Art Market : The Application of AI Machine Learning to Art Authentication
Alternate title
Potencial Transformação Digital do Mercado de Arte : A Aplicação da Autenticação da Máquina de Aprendizagem de Arte
Number of pages
76
Publication year
2024
Degree date
2024
School code
7020
Source
MAI 86/7(E), Masters Abstracts International
ISBN
9798302391636
University/institution
Universidade Catolica Portuguesa (Portugal)
University location
Portugal
Degree
M.S.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
31812445
ProQuest document ID
3161880263
Document URL
https://www.proquest.com/dissertations-theses/potential-digital-transformation-art-market/docview/3161880263/se-2?accountid=208611
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic