Content area
Complexity reduction is one of the main issues of digital signal processing (DSP) algorithms, especially in communication systems where each new generation brings new requirements towards increasing data rates and improved accuracy positioning, leading to the growth of power consumption and chip area. To meet these requirements and at the same time find a trade-off between high performance and low implementation cost, more sophisticated DSP algorithms need to be developed. Recent communication standards require flexible, adaptive systems capable of real-time frequency-domain tuning. Variable digital filters (VDFs) address these needs by enabling “on-the-fly” frequency response adjustments without the need for online filter design. The key feature of VDFs is that they require only an adjustment of one or a few parameters to change their characteristics, without the need for extensive additional computations. Most VDF coefficients remain fixed after the initial design, allowing for efficient hardware implementation. This makes VDFs essential for modern adaptive communication technologies.
This thesis primarily focuses on the design and low-complexity implementation techniques of VDFs and presents three main contributions. Firstly, it proposes three VDF realizations for simultaneous lowpass filtering and equalization using polynomial channel models, with systematic design procedures based on minimax optimization for all the proposed structures. In addition, a fast design method for the VDFs with several variable parameters, which can substantially decrease the design time, is presented. Secondly, it introduces frequency-domain implementations of VDFs using the overlap-save technique. Based on the assumption that these filters have been designed using a common design approach based on optimizing the impulse response coefficients, the filter DFT coefficients are proposed to be implemented as fixed, hybrid, or variable weights. Lastly, the thesis presents an efficient design approach for a variable-bandwidth digital filter implemented in the frequency domain using the overlap-save method. The proposed approach is based on a hybrid of frequency sampling and optimization, allowing for direct optimization of the DFT coefficients considering the filter frequency-domain implementation and thereby noticeably reducing the cost of implementation and an online update of the DFT filter coefficients when the bandwidth is varied.