Content area

Abstract

Background: The neurodevelopmental disorder Fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene which prevents FMRP production. FMRP modulates the expression and function of a wide variety of proteins, including voltage-gated ion channels such as Hyperpolarization-Activated Cyclic Nucleotide gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders. MD connectivity with mPFC is integral to executive functions like working memory and social behaviors that are disrupted in FXS. Methods: We used a combination of retrograde labeling and ex vivo brain slice whole cell electrophysiology in 40 wild type and 42 Fmr1 KO male mice to investigate how a lack of Fmr1 affects intrinsic cellular properties in lateral (MD-L) and medial (MD-M) MD neurons that project to the medial prefrontal cortex (MD→mPFC neurons). Results: In MD-L neurons, Fmr1 knockout caused a decrease in HCN-mediated membrane properties such as voltage sag and membrane afterhyperpolarization. These changes in subthreshold properties were accompanied by changes in suprathreshold neuron properties such as the variability of action potential burst timing. Conclusions: In Fmr1 knockout mice, reduced HCN channel activity in MD→mPFC neurons impairs both the timing and magnitude of HCN-mediated membrane potential regulation. Changes in response timing may adversely affect rhythm propagation in Fmr1 KO thalamocortical circuitry. MD thalamic neurons are critical for maintaining rhythmic activity involved in cognitive and affective functions. Understanding specific mechanisms of thalamocortical circuit activity may lead to therapeutic interventions for individuals with FXS.

Competing Interest Statement

The authors have declared no competing interest.

Details

1009240
Title
Fmr1 KO causes delayed rebound spike timing in mediodorsal thalamocortical neurons through regulation of HCN channel activity
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 3, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3163040498
Document URL
https://www.proquest.com/working-papers/fmr1-ko-causes-delayed-rebound-spike-timing/docview/3163040498/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-04
Database
ProQuest One Academic