Full Text

Turn on search term navigation

© 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The immunosuppressive residual tumor microenvironment (IRTM) is a key factor in the high recurrence and metastasis rates of hepatocellular carcinoma (HCC) after microwave ablation (MWA). Cholesterol‐rich tumor fragments significantly contribute to IRTM deterioration. This study developed a cholesterol‐targeted catalytic hydrogel, DA‐COD‐OD‐HCS, to enhance the synergy between MWA and immune checkpoint inhibitors (ICIs) for HCC treatment. Cholesterol oxidase (COD), modified with dimethyl maleic anhydride (DA) for release in acidic IRTM, is used to degrade cholesterol. Oxydextran (OD) and hemin‐chitosan (HCS) formed a dual network gel, ensuring long‐term fixation of COD and hemin in the IRTM post‐MWA. In both in vitro and in vivo HCC models, DA‐COD‐OD‐HCS effectively released COD, degraded cholesterol, and induced tumor cell ferroptosis, enhancing the antitumor immune response. Combined with anti‐PD‐L1 immunotherapy, this strategy inhibited primary tumor growth and distant metastases, without side effects on adjacent tissues. This work highlights that cholesterol‐targeting catalytic hydrogels fueled by tumor debris can significantly improve the efficacy of MWA and ICIs, offering a novel therapeutic approach for HCC.

Details

Title
Cholesterol Targeted Catalytic Hydrogel Fueled by Tumor Debris can Enhance Microwave Ablation Therapy and Anti‐Tumor Immune Response
Author
Shen, Lin 1   VIAFID ORCID Logo  ; Yang, Zhijuan 2 ; Zhong, Yi 1 ; Bi, Yanran 1 ; Yu, Junchao 3 ; Lu, Qinwei 4 ; Su, Yanping 3 ; Chen, Xiaoxiao 1 ; Zhao, Zhongwei 1 ; Shu, Gaofeng 1 ; Chen, Minjiang 1 ; Cheng, Liang 2 ; Feng, Liangzhu 2 ; Lu, Chenying 1 ; Liu, Zhuang 2 ; Ji, Jiansong 1   VIAFID ORCID Logo 

 Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P. R. China, Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, P. R. China 
 Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, P. R. China 
 Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P. R. China 
 Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P. R. China, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, P. R. China 
Section
Research Article
Publication year
2025
Publication date
Feb 1, 2025
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3163163599
Copyright
© 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.