Content area

Abstract

Abstract

Allostery, the process by which binding at one site perturbs a distant site, is being rendered as a key focus in the field of drug development with its substantial impact on protein function. The identification of allosteric pockets (sites) is a challenging task and several techniques have been developed, including Machine Learning (ML) to predict allosteric pockets that utilize both static and pocket features. Our work, DeepAllo, is the first study that combines fine-tuned protein language model (pLM) with FPocket features and shows an increase in prediction performance of allosteric sites over previous studies. The pLM model was fine-tuned on Allosteric Dataset (ASD) in Multitask Learning (MTL) setting and was further used as a feature extractor to train XGBoost and AutoML models. The best model predicts allosteric pockets with 89.66% F1 score and 90.5% of allosteric pockets in the top 3 positions, outperforming previous results. A case study has been performed on proteins with known allosteric pockets, which shows the proof of our approach. Moreover, an effort was made to explain the pLM by visualizing its attention mechanism among allosteric and non-allosteric residues.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

* We made some figures more clear and added some more analysis in the supplementary material.

Details

1009240
Title
DeepAllo: Allosteric Site Prediction using Protein Language Model (pLM) with Multitask Learning
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 7, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Milestone dates
2024-10-13 (Version 1)
ProQuest document ID
3165215947
Document URL
https://www.proquest.com/working-papers/deepallo-allosteric-site-prediction-using-protein/docview/3165215947/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-11
Database
ProQuest One Academic