Content area

Abstract

In neural decoding, reconstruction seeks to create a literal image from information in brain activity, typically achieved by mapping neural responses to a latent representation of a generative model. A key challenge in this process is understanding how information is processed across visual areas to effectively integrate their neural signals. This requires an attention mechanism that selectively focuses on neural inputs based on their relevance to the task of reconstruction --- something conventional attention models, which capture only input-input relationships, cannot achieve. To address this, we introduce predictive attention mechanisms (PAMs), a novel approach that learns task-driven "output queries" during training to focus on the neural responses most relevant for predicting the latents underlying perceived images, effectively allocating attention across brain areas. We validate PAM with two datasets: (i) B2G, which contains GAN-synthesized images, their original latents and multi-unit activity data; (ii) Shen-19, which includes real photographs, their inverted latents and functional magnetic resonance imaging data. Beyond achieving state-of-the-art reconstructions, PAM offers a key interpretative advantage through the availability of (i) attention weights, revealing how the model's focus was distributed across visual areas for the task of latent prediction, and (ii) values, capturing the stimulus information decoded from each area.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

* This revision improves the clarity of the explanation of PAM. The results themselves remain unchanged.

Details

1009240
Title
PAM: Predictive attention mechanism for neural decoding of visual perception
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 8, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Milestone dates
2024-06-08 (Version 1)
ProQuest document ID
3165216348
Document URL
https://www.proquest.com/working-papers/pam-predictive-attention-mechanism-neural/docview/3165216348/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-11
Database
ProQuest One Academic