Content area

Abstract

Motivation

Spatial transcriptomics is a state-of-art technique that allows researchers to study gene expression patterns in tissues over the spatial domain. As a result of technical limitations, the majority of spatial transcriptomics techniques provide bulk data for each sequencing spot. Consequently, in order to obtain high-resolution spatial transcriptomics data, performing deconvolution becomes essential. Most existing deconvolution methods rely on reference data (e.g., single-cell data), which may not be available in real applications. Current reference-free methods encounter limitations due to their dependence on distribution assumptions, reliance on marker genes, or the absence of leveraging histology and spatial information. Consequently, there is a critical need for the development of highly flexible, robust, and user-friendly reference-free deconvolution methods capable of unifying or leveraging case-specific information in the analysis of spatial transcriptomics data.

Results

We propose a novel reference-free method based on regularized non-negative matrix factorization (NMF), named Flexible Analysis of Spatial Transcriptomics (FAST), that can effectively incorporate gene expression data, spatial, and histology information into a unified deconvolution framework. Compared to existing methods, FAST imposes fewer distribution assumptions, utilizes the spatial structure information of tissues, and encourages interpretable factorization results. These features enable greater flexibility and accuracy, making FAST an effective tool for deciphering the complex cell-type composition of tissues and advancing our understanding of various biological processes and diseases. Extensive simulation studies have shown that FAST outperforms other existing reference-free methods. In real data applications, FAST is able to uncover the underlying tissue structures and identify the corresponding marker genes.

Details

1009240
Title
Flexible analysis of spatial transcriptomics data (FAST): a deconvolution approach
Publication title
Volume
26
Pages
1-14
Publication year
2025
Publication date
2025
Section
Research
Publisher
Springer Nature B.V.
Place of publication
London
Country of publication
Netherlands
Publication subject
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-01-31
Milestone dates
2023-10-16 (Received); 2025-01-16 (Accepted); 2025-01-31 (Published)
Publication history
 
 
   First posting date
31 Jan 2025
ProQuest document ID
3165418133
Document URL
https://www.proquest.com/scholarly-journals/flexible-analysis-spatial-transcriptomics-data/docview/3165418133/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-11
Database
ProQuest One Academic