Content area

Abstract

Deep learning (DL)-based image synthesis has recently gained enormous interest in medical imaging, allowing for generating multi-contrast data and therefore, the recovery of missing samples from interrupted or artefact-distorted acquisitions. However, the accuracy of DL models heavily relies on the representativeness of the training datasets naturally characterized by their distributions, experimental setups or preprocessing schemes. These complicate generalizing DL models across multi-site heterogeneous data sets while maintaining the confidentiality of the data. One of the possible solutions is to employ federated learning (FL), which enables the collaborative training of a DL model in a decentralized manner, demanding the involved sites to share only the characteristics of the models without transferring their sensitive medical data. The paper presents a DL-based magnetic resonance (MR) data translation in a FL way. We introduce a new aggregation strategy called FedBAdam that couples two state-of-the-art methods with complementary strengths by incorporating momentum in the aggregation scheme and skipping the batch normalization layers. The work comprehensively validates 10 FL-based strategies for an image-to-image multi-contrast MR translation, considering healthy and tumorous brain scans from five different institutions. Our study has revealed that the FedBAdam shows superior results in terms of mean squared error and structural similarity index over personalized methods, like the FedMRI, and standard FL-based aggregation techniques, such as the FedAvg or FedProx, considering multi-site multi-vendor heterogeneous environment. The FedBAdam has prevented the overfitting of the model and gradually reached the optimal model parameters, exhibiting no oscillations.

Competing Interest Statement

The authors have declared no competing interest.

Details

1009240
Title
Validation of ten federated learning strategies for multi-contrast image-to-image MRI data synthesis from heterogeneous sources
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 11, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3165538467
Document URL
https://www.proquest.com/working-papers/validation-ten-federated-learning-strategies/docview/3165538467/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-12
Database
ProQuest One Academic