Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Seismic isolation and damping technologies, though extensively used in buildings, are less common in large hydraulic structures, underscoring the importance of researching seismic mitigation methods for these constructions. This research first establishes that saturated sandy soil can act as a damping material through experimental and theoretical analysis. Subsequently, a novel hollow concrete gravity dam containing saturated sandy soil is proposed, utilizing the EOS (equation of state) subroutine for viscous fluids to model the liquefied sand. The findings indicate that the new-type dam exhibits a reduction in displacement of approximately 20% along the flow direction under an 8-degree seismic event compared to conventional gravity dams. This decrease correlates inversely with the characteristic wave speed of the saturated sandy soil, while the energy dissipation capacity of the saturated sandy soil is directly proportional to the soil layer’s thickness. Finally, a small-scale shaking table test revealed that saturated sandy soil effectively reduces displacement and acceleration at the dam crest. These findings were corroborated by numerical simulations, which further substantiated the reliability of both the experimental and simulated data. Utilizing saturated sandy soil for energy dissipation and seismic damping in dams offers cost benefits, high durability, and significant effectiveness, representing a promising direction for the advancement of seismic mitigation in concrete gravity dams.

Details

Title
Seismic Response Analysis of a Conceptual Hollow Concrete Gravity Dam Containing Saturated Sandy Soil
Author
Zhang, Fuyou 1 ; Wei, Yuchen 1 ; Song, Yun 2 ; Zhao, Yumeng 1 

 College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China; [email protected] (F.Z.); [email protected] (Y.Z.) 
 College of Information Science and Technoloay and Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China; [email protected] 
First page
1439
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165778507
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.