Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The fatigue plastic mechanism and dislocation characteristics of engineering materials are the key to studying fatigue damage. In this study, the molecular dynamics (MD) method was employed to investigate the microstructural characteristics and fatigue mechanical properties of both single-crystalline and polycrystalline iron under varying strain amplitudes associated with cyclic hardening, cyclic softening, and cyclic saturation. The occurrence, accumulation, and formation process of the local plastic fatigue damage of monocrystalline/polycrystalline iron under fatigue load are discussed. The local plastic initiation and accumulation of single-crystal iron occur at the intersection of slip planes, which is the dislocation source. The 1/2<111> dislocation plays an important role in the fatigue plastic accumulation of single-crystal iron. Polycrystalline iron undergoes grain rotation and coalescence during cyclic loading. The grain size responsible for plastic deformation gradually increases. The initiation and accumulation of local plasticity occurs at the grain boundary, which eventually leads to fatigue damage at the grain boundary.

Details

Title
Molecular Dynamics Simulation of Low-Cycle Fatigue Behavior of Single/Polycrystalline Iron
Author
Zhang, Tianyu 1 ; Zhou, Jinjie 1 ; Shen, Jinchuan 1 

 School of Mechanical Engineering, North University of China, Taiyuan 030051, China; [email protected] (T.Z.); [email protected] (J.S.); Shanxi Key Laboratory of Intelligent Equipment Technology in Harsh Environment, North University of China, Taiyuan 030051, China 
First page
217
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165817092
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.