Content area

Abstract

This paper presents an Enhanced Multilinear Principal Component Analysis (EMPCA) algorithm, an improved variant of the traditional Multilinear Principal Component Analysis (MPCA) tailored for efficient dimensionality reduction in high-dimensional data, particularly in image analysis tasks. EMPCA integrates random singular value decomposition to reduce computational complexity while maintaining data integrity. Additionally, it innovatively combines the dimensionality reduction method with the Mask R-CNN algorithm, enhancing the accuracy of image segmentation. Leveraging tensors, EMPCA achieves dimensionality reduction that specifically benefits image classification, face recognition, and image segmentation. The experimental results demonstrate a 17.7% reduction in computation time compared to conventional methods, without compromising accuracy. In image classification and face recognition experiments, EMPCA significantly enhances classifier efficiency, achieving comparable or superior accuracy to algorithms such as Support Vector Machines (SVMs). Additionally, EMPCA preprocessing exploits latent information within tensor structures, leading to improved segmentation performance. The proposed EMPCA algorithm holds promise for reducing image analysis runtimes and advancing rapid image processing techniques.

Details

1009240
Title
Enhanced Multilinear PCA for Efficient Image Analysis and Dimensionality Reduction: Unlocking the Potential of Complex Image Data
Publication title
Volume
13
Issue
3
First page
531
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-02-05
Milestone dates
2025-01-05 (Received); 2025-02-04 (Accepted)
Publication history
 
 
   First posting date
05 Feb 2025
ProQuest document ID
3165831060
Document URL
https://www.proquest.com/scholarly-journals/enhanced-multilinear-pca-efficient-image-analysis/docview/3165831060/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-12
Database
ProQuest One Academic