Content area

Abstract

Speckle reduction in Synthetic Aperture Radar (SAR) images is a crucial challenge for effective image analysis and interpretation in remote sensing applications. This study proposes a novel deep learning-based approach using autoencoder architectures for SAR image despeckling, incorporating analysis of variance (ANOVA) for hyperparameter optimization. The research addresses significant gaps in existing methods, such as the lack of rigorous model evaluation and the absence of systematic optimization techniques for deep learning models in SAR image processing. The methodology involves training 240 autoencoder models on real-world SAR data, with performance metrics evaluated using Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Equivalent Number of Looks (ENL). By employing Pareto frontier optimization, the study identifies models that effectively balance denoising performance with the preservation of image fidelity. The results demonstrate substantial improvements in speckle reduction and image quality, validating the effectiveness of the proposed approach. This work advances the application of deep learning in SAR image denoising, offering a comprehensive framework for model evaluation and optimization.

Details

1009240
Title
Optimization of Autoencoders for Speckle Reduction in SAR Imagery Through Variance Analysis and Quantitative Evaluation
Author
Cardona-Mesa, Ahmed Alejandro 1   VIAFID ORCID Logo  ; Vásquez-Salazar, Rubén Darío 2   VIAFID ORCID Logo  ; Diaz-Paz, Jean P 2   VIAFID ORCID Logo  ; Sarmiento-Maldonado, Henry O 2   VIAFID ORCID Logo  ; Gómez, Luis 3   VIAFID ORCID Logo  ; Travieso-González, Carlos M 4   VIAFID ORCID Logo 

 Faculty of Sciences and Humanities, Institución Universitaria Digital de Antioquia, 55th Av, 42-90, Medellín 050012, Colombia; [email protected] 
 Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín 050022, Colombia; [email protected] (R.D.V.-S.); [email protected] (J.P.D.-P.); [email protected] (H.O.S.-M.) 
 Electronic Engineering and Automatic Control Department, IUCES, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; [email protected] 
 Signals and Communications Department, IDeTIC, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain 
Publication title
Volume
13
Issue
3
First page
457
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-01-30
Milestone dates
2024-12-31 (Received); 2025-01-28 (Accepted)
Publication history
 
 
   First posting date
30 Jan 2025
ProQuest document ID
3165831698
Document URL
https://www.proquest.com/scholarly-journals/optimization-autoencoders-speckle-reduction-sar/docview/3165831698/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-12
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic