Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study evaluates the efficiency of a swarm intelligence algorithm called marriage in honey-bee optimization (MBO) in solving the single-machine weighted earliness/tardiness problem, a type of NP-hard combinatorial optimization problem. The goal is to find the optimal sequence for completing a set of tasks on a single machine, minimizing the total penalty incurred for tasks being completed too early or too late compared to their deadlines. To achieve this goal, the study adapts the MBO metaheuristic by introducing modifications to optimize the objective function and produce high-quality solutions within reasonable execution times. The novelty of this work lies in the application of MBO to the single-machine weighted earliness/tardiness problem, an approach previously unexplored in this context. MBO was evaluated using the test problem set from Biskup and Feldmann. It achieved an average improvement of 1.03% across 280 problems, surpassing upper bounds in 141 cases (50.35%) and matching or exceeding them in 193 cases (68.93%). In the most constrained problems (h = 0.2 and h = 0.4), the method achieved an average improvement of 3.77%, while for h = 0.6 and h = 0.8, the average error was 1.72%. Compared to other metaheuristics, MBO demonstrated competitiveness, with a maximum error of 1.12%. Overall, MBO exhibited strong competitiveness, delivering significant improvements and high efficiency in the problems studied.

Details

Title
An Improved Marriage in Honey-Bee Optimization Algorithm for Minimizing Earliness/Tardiness Penalties in Single-Machine Scheduling with a Restrictive Common Due Date
Author
Palominos, Pedro 1   VIAFID ORCID Logo  ; Mazo, Mauricio 1 ; Fuertes, Guillermo 2   VIAFID ORCID Logo  ; Alfaro, Miguel 1 

 Industrial Engineering Department, University of Santiago de Chile, Avenida Victor Jara 3769, Santiago 9170124, Chile 
 Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, Avenida Viel 1497, Ruta 5 Sur, Santiago 8370993, Chile 
First page
418
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165832665
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.