Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To reveal the regulatory effects of nitrogen and phosphorus interactions on grain-filling- and starch-synthesis-related enzymes, and grain weight of superior grains (SGs) and inferior grains (IGs) and taste quality, the japonica rice cultivar Shennong 265 was grown under field conditions with three nitrogen levels (210, 178.5, and 147 kg N ha−1; N3, N2, and N1) and two phosphorus levels (105 and 73.5 kg P ha−1; P2 and P1). At the N3 level, the yield of P1 was significantly lower (by 19.26%) compared to P2; at the N2 and N1 levels, P1 yielded higher than P2, peaking at N2P1. Spikelets per panicle showed P2 exceeding P1 at the same nitrogen level, with the highest for both SGs and IGs observed at N2P2, followed by N2P1. Reductions in nitrogen and phosphorus decreased the grain-filling rate but prolonged the duration for grain-filling. N2P1 maintained grain weight by extending the grain-filling duration across the early, middle, and late stages of IGs, and the middle and late stages of SGs. Increased nitrogen enhanced the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE), whereas increased phosphorus inhibited these activities in SGs but enhanced them in IGs. Reduced nitrogen and phosphorus fertilizer diminished ADP glucose pyrophosphorylase (AGPP) and granule-bound starch synthase (GBSS) activities in SGs and IGs, inhibiting amylose accumulation while enhancing taste value. Compared with N3P2, the taste value of N2P1 increased significantly by 6.93%, attributed to a higher amylopectin/amylose ratio. N2P1 (178.5 kg N ha−1 and 73.5 kg P ha−1) optimized enzyme activity, starch composition, and grain filling, balancing both yield and taste, and thus demonstrated an effective fertilization strategy for stable rice production.

Details

Title
Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions
Author
Jiang, Hongfang 1   VIAFID ORCID Logo  ; Zhao, Yanze 1 ; Chen, Liqiang 2 ; Xue Wan 1 ; Bingchun Yan 1 ; Liu, Yuzhuo 1 ; Liu, Yuqi 1 ; Zhang, Wenzhong 1 ; Gao, Jiping 1   VIAFID ORCID Logo 

 Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; [email protected] (H.J.); [email protected] (Y.Z.); [email protected] (X.W.); [email protected] (B.Y.); [email protected] (Y.L.); [email protected] (Y.L.) 
 School of Agriculture, Liaodong University, Dandong 118001, China; [email protected] 
First page
432
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165847415
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.