Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study investigates the effects of nano-oxide dispersoids on microstructural evolution, phase formation, and mechanical properties of W-Mo-Ti alloys reinforced with AlCoCrFeNi2.1 during mechanical alloying. An EBSD/EDS analysis confirmed the formation of different phases, including the tungsten matrix, FCC reinforcement phase, Al2O3, and (Al,Cr) oxide. Y2O3 particles played a crucial role in refining the microstructure, promoting a uniform dispersion of the reinforcement phase and oxide particles in the tungsten model alloys. Mechanical testing demonstrates that the Y2O3-containing alloy exhibits improved hardness with prolonged milling, attributed to the refinement in the microstructure. In contrast, the Y2O3-free alloy shows reduced hardness due to the agglomeration of reinforcement phases surrounded by an (Al,Cr) oxide layer. The model tungsten alloys exhibit brittle behavior in compression tests, which can be attributed to the presence of (Al,Cr) oxide layers weakening the interfacial bonding and limiting plastic deformation.

Details

Title
Influence of Y2O3 Nano-Dispersoids on the Characteristics of AlCoCrFeNi2.1-Reinforced Tungsten Alloys via Mechanical Alloying and Low-Temperature Sintering
Author
Chun-Liang, Chen 1 ; Fang-Yu, Huang 1 ; West, Geoff 2 

 Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan 
 Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK 
First page
672
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165848690
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.