Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Variations in vegetation indices derived from multispectral images and digital terrain models from satellite imagery have been successfully used for reclamation and hazard management in former mining areas. However, low spatial resolution and the lack of sufficiently detailed information on surface morphology have restricted such studies to large sites. This study investigates the application of small, unmanned aerial vehicles (UAVs) equipped with multispectral sensors for land cover classification and vegetation monitoring. The application of UAVs bridges the gap between large-scale satellite remote sensing techniques and terrestrial surveys. Photogrammetric terrain models and orthoimages (RGB and multispectral) obtained from repeated mapping flights between November 2023 and May 2024 were combined with an ALS-based reference terrain model for object-based image classification. The collected data enabled differentiation between natural forests and areas affected by former mining activities, as well as the identification of variations in vegetation density and growth rates on former mining areas. The results confirm that small UAVs provide a versatile and efficient platform for classifying and monitoring mining areas and forested landslides.

Details

Title
Application of UAV Photogrammetry and Multispectral Image Analysis for Identifying Land Use and Vegetation Cover Succession in Former Mining Areas
Author
Reinprecht, Volker  VIAFID ORCID Logo  ; Kieffer, Daniel Scott
First page
405
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165892088
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.