Content area

Abstract

Understanding the transmission routes of high-pathogenicity avian influenza (HPAI) is crucial for developing effective control measures to prevent its spread. In this context, windborne transmission, the idea that the virus can travel through the air over considerable distances, is a contentious concept and, documented cases are rare. Here, though, we provide genetic evidence supporting the feasibility of windborne transmission. During the 2023-24 HPAI season, molecular surveillance identified identical H5N1 strains among a cluster of unrelated commercial farms about 8 km apart in the Czech Republic. The episode started with the abrupt mortality of fattening ducks on one farm and was followed by disease outbreaks at two nearby high-biosecurity chicken farms. Using genetic, epizootiological, meteorological and geographical data, we reconstructed a mosaic of events strongly suggesting wind was the mechanism of infection transmission between poultry in at least two independent cases. By aligning the genetic and meteorological data with critical outbreak events, we determined the most likely time window during which the transmission occurred and inferred the sequence of infected houses at the recipient sites. Our results suggest that the contaminated plume emitted from the infected fattening duck farm was the critical medium of HPAI transmission, rather than the dust generated during depopulation. Furthermore, they also strongly implicate the role of confined mechanically-ventilated buildings with high population densities in facilitating windborne transmission and propagating virus concentrations below the minimum infectious dose at the recipient sites. These findings underscore the importance of considering windborne spread in future outbreak mitigation strategies.

Competing Interest Statement

The authors have declared no competing interest.

Details

1009240
Title
Genetic data and meteorological conditions: unravelling the windborne transmission of H5N1 high-pathogenicity avian influenza between commercial poultry outbreaks
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 12, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3165948586
Document URL
https://www.proquest.com/working-papers/genetic-data-meteorological-conditions/docview/3165948586/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-13
Database
ProQuest One Academic