Content area

Abstract

Bacteria colonize surfaces through complex mechanisms of surface sensing. Pili are dynamic bacterial appendages that play an important role in this process. In Caulobacter crescentus, tension on retracting, surface-bound pili triggers the rapid synthesis of the adhesive holdfast, which permanently attaches cells to surfaces. However, the detailed mechanisms of pilus-mediated surface sensing are unclear. In this study, we used a genetic screen to isolate mutants with altered pilus activity to identify genes that may be involved in pilus-mediated surface-sensing. This screen identified cpaL, whose deletion led to reduced piliation levels, and surprisingly, a threefold increase in surface adhesion due to increased holdfast production. To understand this finding, we compared holdfast synthesis in wild-type and cpaL mutant cells under conditions that block pilus retraction. While this treatment increased holdfast production in wild-type cells by triggering the surface-sensing pathway, no increase was observed in the cpaL mutant, suggesting that mutation of cpaL maximally stimulates surface-sensing. Furthermore, when the cpaL mutant was grown in a medium that blocks the surface sensing pathway, cells exhibited decreased surface attachment and holdfast production, consistent with a role for CpaL in pilus-dependent surface sensing in C. crescentus. To better understand the function of CpaL, we analyzed its predicted structure, which suggested that CpaL is a minor pilin fused to a mechanosensitive von Willebrand factor type A (vWA) domain that could be accommodated at the pilus tip. These results collectively position CpaL as a strong candidate for a mechanosensory element in pilus-mediated surface sensing.

Details

1009240
Taxonomic term
Title
Stimulation of the Caulobacter crescentus surface sensing pathway by deletion of a specialized minor pilin-like gene
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 12, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3165948627
Document URL
https://www.proquest.com/working-papers/stimulation-caulobacter-crescentus-surface/docview/3165948627/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-13
Database
ProQuest One Academic