Content area

Abstract

RNA-RNA interactions (RRIs) are fundamental to gene regulation and RNA processing, yet their molecular determinants remain unclear. In this work, we analyzed several large-scale RRI datasets and identified low-complexity repeats (LCRs), including simple tandem repeats, as key drivers of RRIs. Our findings reveal that LCRs enable thermodynamically stable interactions with multiple partners, positioning them as key hubs in RNA-RNA interaction networks. RNA-sequencing of the interactors of the Lhx1os lncRNA allowed to validate the importance of LCRs in shaping interactions potentially involved in neuronal development.Recognizing the pivotal role of sequence determinants, we developed RIME, a deep learning model that predicts RRIs by leveraging embeddings from a nucleic acid language model. RIME outperforms traditional thermodynamics-based tools, successfully captures the role of LCRs and prioritizes high-confidence interactions, including those established by lncRNAs. RIME is freely available at https://tools.tartaglialab.com/rna_rna.

Competing Interest Statement

The authors have declared no competing interest.

Details

1009240
Title
Decoding RNA-RNA Interactions: The Role of Low-Complexity Repeats and a Deep Learning Framework for Sequence-Based Prediction
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 16, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3167424057
Document URL
https://www.proquest.com/working-papers/decoding-rna-interactions-role-low-complexity/docview/3167424057/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-17
Database
ProQuest One Academic