Content area

Abstract

Due to the many advantages of Fiber Reinforced Polymer (FRP) decks, such as lightweight and high strength, recently, using FRP decks as building deck panels is considered an alternative choice to traditional decks. Accordingly, there is an increasing need for an analysis tool for engineering and academic applications. Finite element is an accurate and reliable method for analyzing FRP decks. However, high computational cost and modeling difficulty somewhat limit its application. To overcome this shortcoming, this study presents an integrated, easy-to-use, computationally-efficient, and yet rather accurate analysis method for FRP decks. This integrated method was implemented in a computer code and can be easily used to analyze building FRP deck panels. To evaluate the deck's applicability as a building floor panel system, some requirements are needed to be met, including maximum allowable elastic deflection, local stability of components, vibration frequency, and ductility of the flooring system. The proposed method uses the Rayleigh-Ritz method to calculate these requirements. Using three different FRP deck examples, it was shown that the proposed method is generic and capable of analyzing various forms of the FRP deck panels, including all-FRP and hybrid decks made of two or more different materials.

Details

Title
Integrated and computationally-efficient analysis method for FRP building floor panels
Author
Sadrara, Ali 1 ; Khezrzadeh, Hamed 2 ; Mofid, Massood 1 

 Center of Excellence in Structures and Earthquake Engineering, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran 
 Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran 
Volume
31
Issue
19
Pages
1793-1808
Publication year
2024
Publication date
2024
Publisher
Sharif University of Technology
Place of publication
Tehran
Country of publication
Iran
Publication subject
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3168046470
Document URL
https://www.proquest.com/scholarly-journals/integrated-computationally-efficient-analysis/docview/3168046470/se-2?accountid=208611
Copyright
Copyright Sharif University of Technology 2024
Last updated
2025-02-18
Database
ProQuest One Academic