Content area

Abstract

Intro: Brain-age models quantify biological ageing by predicting a person's age from neuroimaging data. In early life, brain-age can reflect underlying biological maturity (or immaturity), providing a candidate predictor of typical neurodevelopment versus deviation. Although widely used in adult research, the use of brain-age in early development has been limited due to data availability, heterogeneity and restricted model accessibility. Here, we introduce BabyPy, a shareable brain-age model for individuals aged 0-17 years that achieves accurate predictions despite substantial variability in site, scanner, and preprocessing pipelines. Methods: We trained BabyPy on 4,021 structural T1-weighted MRI scans from multi-site datasets (ages 0-17 years). An external test set of 1,143 scans (ages 0-16 years) was used for validation. Coarse neuroimaging features - grey matter volume (GMV), white matter volume (WMV), and subcortical grey matter volume (sGMV) - along with sex, were the model inputs. An ensemble machine learning approach combined Extra Trees Regression, Support Vector Machine, and Multilayer Perceptron base models. Performance was evaluated via 5-fold cross-validation and external testing. Results: The ensemble meta-model explained 80% of the variance in age (training set, MAE = 1.55 years) and 46% of the variance in the external test set (MAE = 1.72 years). Conclusion: BabyPy is a shareable framework that estimates brainage across a broad developmental range, removing the need for separate age-specific models. Despite limitations due to data heterogeneity, it demonstrates robust predictive performance and supports cross-study comparisons. Future improvements in data harmonisation will further enhance the utility of generic brain-age models like BabyPy.

Competing Interest Statement

All authors declare no competing interests except: JS, RAIB and AA-B hold shares in and JS and RAIB are directors of Centile Bioscience; JHC is shareholder/advisor for BrainKey and Claritas HealthTech.

Footnotes

* Minor adjustments with text and figures. Addition of a graphical abstract.

Details

1009240
Title
BabyPy: a brain-age model for infancy, childhood and adolescence
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 19, 2025
Section
Confirmatory Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Milestone dates
2025-02-05 (Version 1)
ProQuest document ID
3168491281
Document URL
https://www.proquest.com/working-papers/babypy-brain-age-model-infancy-childhood/docview/3168491281/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-20
Database
ProQuest One Academic